As machine learning being used increasingly in making high-stakes decisions, an arising challenge is to avoid unfair AI systems that lead to discriminatory decisions for protected population. A direct approach for obtaining a fair predictive model is to train the model through optimizing its prediction performance subject to fairness constraints, which achieves Pareto efficiency when trading off performance against fairness. Among various fairness metrics, the ones based on the area under the ROC curve (AUC) are emerging recently because they are threshold-agnostic and effective for unbalanced data. In this work, we formulate the training problem of a fairness-aware machine learning model as an AUC optimization problem subject to a class of AUC-based fairness constraints. This problem can be reformulated as a min-max optimization problem with min-max constraints, which we solve by stochastic first-order methods based on a new Bregman divergence designed for the special structure of the problem. We numerically demonstrate the effectiveness of our approach on real-world data under different fairness metrics.
translated by 谷歌翻译
In this paper, we tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing FL algorithms are applicable. In particular, the objective has the form of $\mathbb E_{z\sim S_1} f(\mathbb E_{z'\sim S_2} \ell(w; z, z'))$, where two sets of data $S_1, S_2$ are distributed over multiple machines, $\ell(\cdot)$ is a pairwise loss that only depends on the prediction outputs of the input data pairs $(z, z')$, and $f(\cdot)$ is possibly a non-linear non-convex function. This problem has important applications in machine learning, e.g., AUROC maximization with a pairwise loss, and partial AUROC maximization with a compositional loss. The challenges for designing an FL algorithm lie in the non-decomposability of the objective over multiple machines and the interdependency between different machines. To address the challenges, we propose an active-passive decomposition framework that decouples the gradient's components with two types, namely active parts and passive parts, where the active parts depend on local data that are computed with the local model and the passive parts depend on other machines that are communicated/computed based on historical models and samples. Under this framework, we develop two provable FL algorithms (FeDXL) for handling linear and nonlinear $f$, respectively, based on federated averaging and merging. We develop a novel theoretical analysis to combat the latency of the passive parts and the interdependency between the local model parameters and the involved data for computing local gradient estimators. We establish both iteration and communication complexities and show that using the historical samples and models for computing the passive parts do not degrade the complexities. We conduct empirical studies of FeDXL for deep AUROC and partial AUROC maximization, and demonstrate their performance compared with several baselines.
translated by 谷歌翻译
已经对蜘蛛/莎拉/风暴等方差降低技术进行了广泛的研究,以提高随机非凸优化的收敛速率,这些优化通常维护和更新跨迭代中单个函数的估计器序列。 {\如果我们需要在迭代中跟踪多个功能映射,但是只有访问$ \ Mathcal {o}的随机样品(1)$在每次迭代时$ functional映射?}在解决一个新兴的家族时,有一个重要的应用程序以$ \ sum_ {i = 1}^m f_i(g_i(\ mathbf {w}))的形式形式的耦合组合优化问题,其中$ g_i $可通过随机甲骨文访问$ g_i $。关键问题是跟踪和估计$ \ mathbf g(\ mathbf {w})=(g_1(\ mathbf {w}),\ ldots,g_m(\ mathbf {w})$ $ \ mathbf g(\ mathbf {w})$具有$ m $块,只允许探测$ \ mathcal {o}(1)$块才能达到其随机值和雅各布人。为了提高解决这些问题的复杂性,我们提出了一种新型随机方法,称为多块单个探针差异(MSVR)估计器,以跟踪$ \ mathbf g(\ mathbf {w})$的序列。它的灵感来自风暴,但引入了定制的误差校正术语,不仅可以减轻所选块的随机样品中的噪声,而且还可以减轻那些未进行采样的块中的噪声。在MSVR估计器的帮助下,我们开发了几种算法来解决上述组成问题,并在具有非convex/convex/convex/strank strank convex目标的各种设置中具有改善的复杂性。我们的结果在几个方面都改善了先前的结果,包括样本复杂性和对强凸参数的依赖。多任务深度AUC最大化的经验研究表明,使用新估计器的性能更好。
translated by 谷歌翻译
大规模淋巴结分类的图形神经网络(GNNS)培训具有挑战性。关键困难在于在避免邻居爆炸问题的同时获得准确的隐藏节点表示。在这里,我们提出了一种新技术,称为特征动量(FM),该技术在更新功能表示时使用动量步骤来合并历史嵌入。我们开发了两种特定的算法,称为GraphFM-IB和GraphFM-OB,它们分别考虑了内部和隔离外数据。 GraphFM-AIB将FM应用于内部采样数据,而GraphFM-OB则将FM应用于隔离数据的隔离数据,而口气数据是1跳入数据的1个邻域。对于特征嵌入的估计误差,我们为GraphFM-IB和GraphFM-OB的理论见解提供了严格的合并分析。从经验上讲,我们观察到GraphFM-IB可以有效缓解现有方法的邻里爆炸问题。此外,GraphFM-OB在多个大型图形数据集上实现了有希望的性能。
translated by 谷歌翻译
X-fisk是一个介绍的术语,以代表组成量度或目标家族,其中每个数据点与一组数据点显式或隐式进行比较,以定义风险函数。它包括许多广泛使用的措施或目标在一定的召回水平上的精确度,对比目标等处于最高$ K $的位置。尽管在机器学习,计算机视觉,信息检索等文献中已经研究了这些措施/目标及其优化算法,但优化了这些措施/目标在深度学习方面遇到了一些独特的挑战。在这份技术报告中,我们通过重点关注其算法基础,调查了最近对深X风险优化(DXO)的严格努力。我们介绍了一类技术,以优化X风险以进行深度学习。我们分别将DXO分别属于非凸端优化的非凸优化问题的三个特殊家族,分别分别属于Min-Max优化,非凸组成优化和非Convex Bilevel优化。对于每个问题家族,我们提出了一些强大的基线算法及其复杂性,这将激发进一步的研究以改善现有结果。关于提出的结果和未来研究的讨论在最后进行。在www.libauc.org的libauc库中实现了用于优化各种X风险的有效算法。
translated by 谷歌翻译
在本文中,我们研究了多块最小双重双层优化问题,其中上层是非凸线的最小值最小值目标,而下层级别是一个强烈的凸目标,并且有多个双重变量块和下层级别。问题。由于交织在一起的多块最小双重双重结构,每次迭代处的计算成本可能高高,尤其是在大量块中。为了应对这一挑战,我们提出了一种单循环随机随机算法,该算法需要在每次迭代时仅恒定数量的块进行更新。在对问题的一些温和假设下,我们建立了$ \ Mathcal {o}(1/\ Epsilon^4)$的样本复杂性,用于查找$ \ epsilon $ - 稳定点。这匹配了在一般无偏见的随机甲骨文模型下求解随机非convex优化的最佳复杂性。此外,我们在多任务深度AUC(ROC曲线下)最大化和多任务深度部分AUC最大化中提供了两种应用。实验结果验证了我们的理论,并证明了我们方法对数百个任务问题的有效性。
translated by 谷歌翻译
ROC曲线下的区域(又称AUC)是评估分类器不平衡数据的性能的选择。 AUC最大化是指通过直接最大化其AUC分数来学习预测模型的学习范式。它已被研究了二十年来,其历史可以追溯到90年代后期,从那时起,大量工作就致力于最大化。最近,对大数据和深度学习的深度最大化的随机AUC最大化已受到越来越多的关注,并对解决现实世界中的问题产生了巨大的影响。但是,据我们所知,没有对AUC最大化的相关作品进行全面调查。本文旨在通过回顾过去二十年来审查文献来解决差距。我们不仅给出了文献的整体看法,而且还提供了从配方到算法和理论保证的不同论文的详细解释和比较。我们还确定并讨论了深度AUC最大化的剩余和新兴问题,并就未来工作的主题提供建议。
translated by 谷歌翻译
ROC曲线(AUROC)下的区域已大力应用于分类不平衡,此外,与深度学习技术相结合。但是,没有现有的工作为同行选择适当的深度AUROC最大化技术提供合理的信息。在这项工作中,我们从三个方面填补了这一空白。 (i)我们基准具有各种损失函数,具有不同的算法选择,用于深度AUROC优化问题。我们研究了两类损失功能:成对损失和复合损失,其中包括10个损失函数。有趣的是,我们发现综合损失是一种创新的损失函数类别,比训练收敛和测试概括视角的成对损失表现出更具竞争力的性能。然而,带有更损坏的标签的数据有利于成对的对称损失。 (ii)此外,我们基准并强调了基本算法选择,例如正采样率,正则化,归一化/激活和优化器。主要发现包括:较高的阳性采样率可能对深度AUROC最大化有益;不同的数据集有利于不同的正规化权重;适当的归一化技术,例如Sigmoid和$ \ ell_2 $得分归一化,可以提高模型性能。 (iii)为了优化方面,我们基于成对和复合损失的SGD型,动量类型和ADAM型优化器。我们的发现表明,尽管从训练的角度来看,亚当型方法更具竞争力,但从测试角度来看,它并不优于其他方法。
translated by 谷歌翻译
在本文中,我们提出了适用于深度学习的单向和双向部分AUC(PAUC)最大化的系统和高效的基于梯度的方法。我们通过使用分布强大的优化(DRO)来定义每个单独的积极数据的损失,提出了PAUC替代目标的新公式。我们考虑了两种DRO的配方,其中一种是基于条件 - 价值风险(CVAR),该风险(CVAR)得出了PAUC的非平滑但精确的估计器,而另一个基于KL差异正则DRO产生不确定的dro。但是PAUC的平滑(软)估计器。对于单向和双向PAUC最大化,我们提出了两种算法,并证明了它们分别优化其两种配方的收敛性。实验证明了所提出的算法对PAUC最大化的有效性,以对各种数据集进行深度学习。
translated by 谷歌翻译
本文研究了一系列组成函数的随机优化,其中每个汇总的内部函数与相应的求和指数耦合。我们将这个问题家族称为有限和耦合的组成优化(FCCO)。它在机器学习中具有广泛的应用,用于优化非凸或凸组成措施/目标,例如平均精度(AP),p-norm推动,列表排名损失,邻居组成分析(NCA),深度生存分析,深层可变模型等等,这应该得到更精细的分析。然而,现有的算法和分析在一个或其他方面受到限制。本文的贡献是为非凸和凸目标的简单随机算法提供全面的收敛分析。我们的关键结果是通过使用带有微型批次的基于移动平均的估计器,通过并行加速提高了Oracle的复杂性。我们的理论分析还展示了通过对外部和内部水平相等大小的批量来改善实际实现的新见解。关于AP最大化,NCA和P-norm推动的数值实验证实了该理论的某些方面。
translated by 谷歌翻译